Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
Q is empty.
The TRS is overlay and locally confluent. By [19] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
G(x, c(y)) → G(x, g(s(c(y)), y))
F(s(x)) → F(x)
G(s(x), s(y)) → IF(f(x), s(x), s(y))
G(x, c(y)) → G(s(c(y)), y)
G(s(x), s(y)) → F(x)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G(x, c(y)) → G(x, g(s(c(y)), y))
F(s(x)) → F(x)
G(s(x), s(y)) → IF(f(x), s(x), s(y))
G(x, c(y)) → G(s(c(y)), y)
G(s(x), s(y)) → F(x)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 2 less nodes.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → F(x)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → F(x)
R is empty.
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(s(x)) → F(x)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- F(s(x)) → F(x)
The graph contains the following edges 1 > 1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
G(x, c(y)) → G(x, g(s(c(y)), y))
G(x, c(y)) → G(s(c(y)), y)
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
G(x, c(y)) → G(x, g(s(c(y)), y))
G(x, c(y)) → G(s(c(y)), y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( if(x1, ..., x3) ) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
M( g(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( G(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
if(false, x, y) → y
if(true, x, y) → x
g(x, c(y)) → g(x, g(s(c(y)), y))
g(s(x), s(y)) → if(f(x), s(x), s(y))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
The set Q consists of the following terms:
f(0)
f(1)
f(s(x0))
if(true, x0, x1)
if(false, x0, x1)
g(s(x0), s(x1))
g(x0, c(x1))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.